difference Fourier map 0.11 and $-0.16 \mathrm{e} \AA^{-3}$, ratio of $(\Delta / \sigma)_{\max }=0.002$. Scattering factors from SHELX76. The molecule and the numbering scheme are shown in Fig. 1, molecular packing in Fig. 2, positional parameters and equivalent values of the anisotropic temperature factors for the non-H atoms are given in Table 1,* interatomic distances, angles and torsion angles in Table 2.

[^0]Related literature. Stẹpien, Wajsman, Grabowski, Glinka \& Perrin (1987); Olszak, Stẹpień, Wajsman, Grabowski, Glinka \& Lecocq (1987).

References

Glinka, R. (1986). Structure-Activity Relationship in Dibenzoxadiazonine Systems. 9th Int. Conf. Med. Chem., West Berlin.
Olszak, T. A., Stȩpień, A., Waisman, E., Grabowski, M. J., Glinka, R. \& Lecoce, S. (1987). Acta Cryst. C43, 2169-2171.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELX86. Program for the solution of crystal structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany.
Stȩpień, A., Wajsman, E., Grabowski, M. J., Glinka, R. \& Perrin, M. (1987). Acta Cryst. C43, 2164-2165.

Acta Cryst. (1989). C45, 1248-1250

Structure of the Antimalarial Halofantrine Hydrochloride

By Jean M. Karle*
Department of Pharmacology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA

and Isabella L. Karle
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5000, USA

(Received 11 November 1988; accepted 14 February 1989)

Abstract

Dichloro- α-[2-(dibutylamino)ethyl]-6-(tri-fluoromethyl)-9-phenanthrenemethanol hydrochloride, $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NO}^{+} . \mathrm{Cl}^{-}, M_{r}=536 \cdot 9$, monoclinic, $P 2_{1} / n$, $a=8.169$ (3) , $b=32.924$ (13), $c=22.775$ (6) À, β $=98.99(3)^{\circ}, \quad V=6050.2 \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.18 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.54178 \AA, \mu=15.51 \mathrm{~cm}^{-1}$, $F(000)=2240$, room temperature, final $R=18.3 \%$ for 2899 reflections with $\left|F_{0}\right|>3 \sigma$. The crystal structure of halofantrine hydrochloride was determined to 1.0 to $1 \cdot 1 \AA$ resolution. The high R factor is due to poor crystal quality. In order to have a crystal with sufficient thickness for data collection, it was necessary to use a crystal that had grown in layers. The high R factor is also due to a disordered CF_{3} group, a disordered solvent channel, and high thermal factors on the long hydrocarbon chains. The two halofantrine conformers stack such that the phenanthrene rings are nearly on top of each other with the chlorine and CF_{3} groups on opposite sides and with the hydrocarbon side chains projected away from each other, but on the same side of the phenanthrene rings. Atoms in the phenanthrene rings of the two stacked conformers are separated by

[^1]0108-2701/89/081248-03\$03.00
3.4 to $3.7 \AA$. On each of the halofantrine conformers, one of the n-butyl groups extends in a linear fashion whereas the other n-butyl group is bent back towards the phenanthrene ring. The crystal structure contains a pseudo twofold axis, parallel to the b axis, which intersects $\mathrm{Cl}(3)$ and passes through the center ring of the phenanthrene ring system of both conformers. $\mathrm{Cl}(3)$ is hydrogen bonded with $O(1)(3 \cdot 14 \AA)$ and $O(51)$ ($3.09 \AA$) and perhaps makes a hydrogen-bond distance of $3 \cdot 16 \AA$ with a peak of electron density not found at full weight (symbolized Os, part of disordered solvent). Six disordcred solvent peaks lie in a channel parallel to

Fig. 1. Chemical structure of halofantrine hydrochloride.
(C) 1989 International Union of Crystallography
the a axis. $\mathrm{Cl}(4)$ links the two halofantrine conformers via hydrogen bonding to $\mathrm{N}(1)(2.99 \AA)$ and $\mathrm{N}(51)$ ($3.04 \AA$).

Experimental. Title compound (WR 171,669) (Fig. 1) was obtained from Smith Kline \& French Canada (Mississauga, Ont., Canada) and was crystallized from ethanol. Diffraction data were collected in the form of broad spots from a very thin plate containing inclusions and probably consisting of a stack of slightly misaligned crystals, $0.20 \times 0.30 \times 0.04 \mathrm{~mm}$, in the $\theta-2 \theta$ mode to a maximum 2θ value of 100° on an $R 3 m$ Nicolet four-circle diffractometer using $\mathrm{Cu} K \alpha$ radiation with a graphite monochromator. Range of indices: $h 0 \rightarrow 8, k 0 \rightarrow 21$, and $l-22 \rightarrow 21$. The total number of independent reflections was 6228 . The standard reflections $2,0,12,0,14,0$, and 400 were monitored after every 60 intensity measurements. The standards remained constant within 7%. The lattice parameters were based on 23 centered reflections with 2θ values between 15 and 52°. No correction for absorption or extinction was used. The structure was solved routinely by direct phase determination (Karle \& Karle, 1966) using the programs in SHELXTL (Sheldrick, 1980). All but nine of the non- H atoms in the two independent molecules were found in the first E map. The remaining terminal atoms of the n-butyl chains were found in the first difference map. In subsequent difference maps, atoms were found which correspond to alternate positions for one CF_{3} group. The H atoms attached to the C atoms were placed in idealized positions. Least-squares refinement was performed using 2899 reflections with $\left|F_{o}\right|>3 \sigma\left(F_{o}\right)$. Coordinates for all non-H atoms except $\mathrm{C}(11)$ were refined (on F) by a blocked cascade program in SHELXTL. Anisotropic thermal parameters for the ring C atoms, the Cl atoms, and for one CF_{3} group and isotropic thermal parameters for the remaining $\mathrm{C}, \mathrm{F}, \mathrm{N}$ and O atoms were refined for a total of 491 parameters. Six weaker peaks representing disordered solvent molecules appeared in a large channel ($4.5 \times 7.5 \AA$ cross section) bounded by eight n-butyl groups from four halofantrine molecules and were included at half weight in the least-squares refinement. Their refined U values ranged from $0 \cdot 18$ to $0.40 \AA^{2}$. Neither the type of disorder nor the identification of the solvent molecules was established. Final $R=18.3 \% \quad$ and $\quad w R=17.6 \%, \quad w=1 /\left[\sigma^{2}(|F|)+\right.$ $\left.0.001\left(F_{o}\right)^{2}\right] .(1 / \sigma)_{\max }=0.21$. Final difference electron density $|\rho|<0.82 \mathrm{e} \AA^{-3}$. Atomic scattering factors were those incorporated in SHELXTL.

Coordinates and U_{eq} values for the non-H atoms for the two conformers are listed in Table 1.* The bond

[^2]Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ and thermal parameters $U_{e q}\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

$$
U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }}$
Molecule (I)				
$\mathrm{Cl}(1)$	3524 (8)	1699 (3)	10962 (3)	105 (3)
$\mathrm{Cl}(2)$	2550 (12)	115 (3)	10492 (4)	157 (5)
$\mathrm{F}(1)^{*}$	-1161 (43)	653 (11)	7190 (15)	148 (12) \dagger
F(2)*	-2298 (49)	312 (9) .	7834 (12)	135 (11) \dagger
$\mathrm{F}(3)^{*}$	-3609 (36)	792 (9)	7319 (13)	125 (10) \dagger
$F(1)^{*}$	-1231 (58)	349 (15)	7592 (22)	138 (17) \dagger
$\mathrm{F}(2)^{*}$ *	-3563 (66)	498 (16)	7673 (22)	147 (17) \dagger
$\mathrm{F}(3)^{\prime *}$	-2184 (85)	782 (16)	7083 (22)	147 (21) \dagger
N(1)	1540 (21)	3080 (5)	7851 (7)	61 (5) \dagger
$\mathrm{O}(1)$	640 (17)	2623 (4)	9582 (6)	70 (5) \dagger
C(1)	2713 (34)	1302 (10)	10482 (13)	81 (14)
C(2)	2921 (30)	916 (10)	10624 (10)	117(16)
C(3)	2199 (31)	594 (9)	10284 (10)	85 (13)
C(4)	1334 (37)	700 (11)	9732 (14)	103 (16)
C(4a)	1023 (32)	1105 (10)	9569 (11)	80 (13)
C(4b)	54 (26)	1222 (7)	8981 (11)	55 (10)
C(5)	-580 (29)	917 (9)	8593 (11)	81 (13)
C(6)	-1576 (29)	1039 (7)	8043 (9)	83 (11)
C(7)	-1800 (35)	1422 (9)	7909 (11)	90 (13)
C(8)	-1231 (27)	1720 (8)	8271 (9)	78 (11)
C(8a)	-164 (23)	1626 (6)	8852 (9)	49 (9)
C(9)	424 (26)	1953 (7)	9209 (10)	52 (10)
$\mathrm{C}(10)$	1382 (28)	1834 (8)	9746 (9)	65 (11)
$\mathrm{C}(10 \mathrm{a})$	1757 (30)	1436 (8)	9899 (10)	76 (11)
C(11)*	-2150	700	7700	149 (13) \dagger
C(12)	256 (26)	2362 (6)	9082 (8)	59 (7) \dagger
C(13)	1208 (24)	2524 (6)	8590 (8)	50 (6) \dagger
C(14)	809 (25)	2948 (6)	8412 (8)	55 (6) \dagger
C(15)	730 (29)	3449 (7)	7593 (10)	79 (8) \dagger
C(16)	756 (35)	3830 (9)	7914 (12)	125 (11) \dagger
$\mathrm{C}(17)$	-320 (46)	4174 (12)	7573 (16)	171 (15) \dagger
C (18)	314 (67)	4530 (16)	7922 (23)	288 (27) \dagger
C(19)	3435 (27)	3150 (7)	8062 (10)	86 (8) \dagger
C(20)	4265 (41)	3275 (10)	7496 (13)	143 (12) \dagger
C(21)	6042 (40)	3122 (10)	7546 (13)	130 (12) \dagger
C(22)	6413 (39)	2652 (10)	7609 (14)	150 (13) \dagger
Molecule (II)				
$\mathrm{Cl}(51)$	3308 (8)	1748 (3)	7783 (3)	115 (4)
$\mathrm{Cl}(52)$	3452 (11)	199 (3)	8445 (4)	155 (5)
F(51)	10288 (21)	899 (6)	11536 (6)	160 (10)
F(52)	9061 (24)	425 (5)	10989 (6)	158 (10)
F(53)	7785 (25)	752 (6)	11622 (6)	171 (11)
N(51)	4840 (20)	3128 (5)	10860 (7)	62 (5) \dagger
$\mathrm{O}(51)$	6087 (16)	2702 (4)	9173 (5)	66 (4) \dagger
C(51)	3976 (26)	1344 (7)	8317 (9)	76 (11)
C(52)	3637 (36)	970 (8)	8255 (14)	109 (15)
C(53)	3998 (38)	674 (8)	8633 (17)	97 (16)
C(54)	5005 (33)	767 (10)	9173 (12)	88 (14)
C(54a)	5371 (29)	1165 (9)	9253 (11)	74 (12)
C(54b)	6529 (30)	1293 (10)	9860 (11)	71 (13)
C(55)	7119 (33)	1014 (10)	10229 (12)	91 (15)
C(56)	8052 (35)	1108 (10)	10764 (13)	75 (14)
C(57)	8488 (32)	1497 (10)	10843 (11)	73 (13)
C(58)	7949 (23)	1806 (8)	10510 (8)	69 (11)
C (58a)	6932 (27)	1711 (7)	9953 (9)	73 (10)
C(59)	6198 (22)	2041 (6)	9544 (9)	59 (9)
$\mathrm{C}(60)$	5294 (26)	1903 (8)	8979 (9)	67 (11)
C (60a)	5002 (24)	1485 (7)	8877 (9)	52 (9)
C(61)	8770 (36)	801 (9)	11197 (12)	121 (11) \dagger
C(62)	6477 (23)	2448 (5)	9687 (7)	38 (5) \dagger
C(63)	5283 (24)	2592 (6)	10152 (8)	51 (6) \dagger
C(64)	5775 (26)	3006 (6)	10368 (9)	64 (7) \dagger
C(65)	5608 (38)	3467 (9)	11176 (13)	139 (12) \dagger
C(66)	5914 (44)	3845 (11)	10906 (16)	185 (16) \dagger
C(67)	7229 (63)	4134 (16)	11381 (22)	233 (22) \dagger
C(68)	7541 (83)	4433 (19)	11069 (31)	343 (37) \dagger
C(69)	3143 (33)	3208 (9)	10649 (12)	128 (11) \dagger
C(70)	1968 (56)	3298 (13)	11227 (19)	204 (19) \dagger
C(71)	558 (66)	3089 (15)	11229 (21)	240 (22) \dagger
C(72)	441 (47)	2664 (12)	11136 (16)	173 (15) \dagger
$\mathrm{Cl}(3) \ddagger$	3523 (9)	1579 (2)	4426 (3)	102 (3)
$\mathrm{Cl}(4) \ddagger$	782 (10)	2488 (3)	6847 (3)	124 (4)
Solvent peak				
Os	-4855 (69)	3895 (18)	9075 (25)	227 (25) \dagger

[^3]

Fig. 2. Diagram of the two halofantrine conformers. The numbering scheme is indicated for the C atoms of one halofantrine conformer, for the heteroatoms of both halofantrine conformers, for the Cl atoms of the hydrochloride salt, and for a solvent atom (symbolized Os) not present at full weight. The numbering of the atoms in molecule (II) differs from the numbering of the atoms in molecule (I) by the addition of 50 . Hydrogen bonds are depicted by dashed lines. The size of the circles was arbitrarily chosen to correspond approximately to the atomic weight of the atom.
length of the H atoms attached to the C atoms was kept fixed at $0.96 \AA$ throughout the refinement procedure. The atomic numbering scheme is shown in Fig. 2, molecular packing in Fig. 3.

Related literature. Halofantrine has demonstrated significant antimalarial activity against multi-drugresistant malaria especially West African isolates of Plasmodium falciparum (Oduola, Milhous, Salako, Walker \& Desjardins, 1987) and in humans against endemic P.falciparum malaria at the Thai-Kampuchean border (Boudreau et al., 1988).

Fig. 3. View of halofantrine hydrochloride down the a axis. The packing diagram illustrates the stacking of the two halofantrine conformers such that a pseudo twofold axis, parallel to the y direction, passes between the stacked ring systems of molecules (I) and (II) (see near center of diagram). The isolated circles represent Cl atoms from the hydrochloride salt. The triangles represent disordered solvent molecules. Hydrogen bonds are depicted by dashed lines.

References

Boudreau, E. F., Pang, L. W., Dixon, K. E., Webster, H. K., Pavanand, K., Tosingha, L., Somutsakorn, P. \& Canfield, C. J. (1988). Bull. WHO, 66, 227-235.

Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Oduola, A. M. J., Milhous, W. K., Salako, L. A., Walker, O. \& Desjardins, R. E. (1987). Lancet II, pp. 1304-1305.
Sheldrick, G. M. (1980). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1989). C45, 1250-1251

Structure of Dimethyl 7,8-Benzobicyclo[2.2.2]octa-2,5,7-triene-2,3-dicarboxylate

By James Trotter
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1 Y6

(Received 28 November 1988; accepted 7 February 1989)

Abstract. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}, M_{r}=270 \cdot 29$, tetragonal, $I \overline{4}, a$ $=18.572$ (4), $c=7.957$ (7) $\AA, V=2744$ (2) $\AA^{3}, Z=8$, $D_{x}=1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $0.9 \mathrm{~cm}^{-1}, F(000)=1136, T=295 \mathrm{~K}, R=0.034$ for 608 reflections. The molecule contains a benzobicyclooctatriene ring system with an average $\mathrm{C}=\mathrm{C}-\mathrm{C}$ angle
of $113.3(5)^{\circ}$ and other dimensions close to normal values. One methoxycarbonyl group makes an angle of 8.3° with the plane of the $\mathrm{C}(2)=\mathrm{C}(3)$ double bond, and is thus conjugated, with $C-C=1.473$ (8) \AA; the other methoxycarbonyl group is not conjugated, angle 87.1° and $C-C=1.498$ (9) \AA.

[^0]: *Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond distances and angles involving H atoms, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51775 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: *To whom correspondence should be addressed.

[^2]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51781 (40 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^3]: * Disordered CF_{3} group. The primed F atoms were weighted 40%. Atom $\mathrm{C}(11)$ was kept fixed throughout the refinement procedure.
 \dagger These atoms were refined isotropically. The values represent U_{150}. $\ddagger \mathrm{Cl}$ atom of chloride salt.

